

Healthy Buildings Bay Area 1000 Broadway Suite 200E Oakland, CA 94607 o: 510.210.3333 info@healthybuildings.com

July 25, 2016

Judy Yu Human Resources Manager Bay Area Air Quality Management District 939 Ellis Street San Francisco, CA 94109

Dear Ms. Yu:

Post Construction/Pre-Occupancy IAQ Inspection 375 Beale Street, San Francisco

This is a report of the Healthy Buildings' Post-Construction Phase 2 Indoor Environmental Quality Inspection of the newly renovated BAAQMD spaces in the 375 Beale Street building in San Francisco, CA. We understand that the area inspected has been recently renovated and this inspection and sampling, performed during the days of May 25th, 26th, 27th and July 9th, 10th, 2016, was conducted after the renovation was substantially complete.

Healthy Buildings has developed a post-construction/pre-occupancy program to assist management in reducing risk of indoor air complaints following renovations. The goals of this inspection include:

- Quickly identifying IAQ problems, or potential problems, so they can be corrected in a timely manner.
- Enhancing the relationship between management and occupants by demonstrating a genuine concern for the occupants' well-being.
- Improving occupant productivity and reducing absenteeism and worker's compensation claims.
- Protecting against liability and demonstrating due-diligence by retaining an independent, respected third-party professional.

Sixteen (16) sampling locations were selected throughout the occupied space to complete 8-hour testing for carbon monoxide, ozone, PM10 dusts, PM2.5 dusts, volatile organic compounds (VOCs), formaldehyde (HCHO) and caprolactam.

No.	Location
1	1F South Central Yerba Buena Conference Room 107/109
2	1F East Central Building Engineering Office 130
3	2F East Central Open Offices 242C
4	2F Northeast Lab XRF 234
5	2F East Interior Office 218
6	6F South Central Conference Room 6206
7	6F East Central Office 6344

No.	Location				
8	6F Southwest Office 6213				
9	6F Northwest Office 6124				
10	6F Northeast Office 6326				
11	7F Northeast Cube Area 7312				
12	7F Southwest Cube Area 7215				
13	7F Northwest Office 7115				
14	8F Northeast Office 8316				
15	8F South Central Work Room 8358				
16	8F Southwest Office 8224				
17	Outdoor Reference				

Reporting Guidelines

Healthy Buildings has included in this report standards, threshold limit values, time weighted averages, or other recommended acceptable levels for various indoor air pollutants based on the findings and publications of several U.S. government agencies, independent industrial hygiene organizations, and other bodies. Furthermore, based on our professional opinion, we have selected the most appropriate guidelines in interpreting the data gathered during this inspection. If further information is required in appreciating the guidelines used by Healthy Buildings, please feel free to request such information.

Observations

The recently renovated areas include the 1st, 2nd, 6th, 7th, and 8th floors. The areas contained furnishings and equipment typical to commercial office space. The space was in good overall condition. Please note: final construction punch list activities, moving furniture and equipment and areas with early occupancy were noted to be ongoing within the spaces during testing.

Methodology

Contaminant	Target Concentration	Healthy Buildings Sampling Method
Formaldehyde	CARB REL Levels (27 ppb) and/or OSHA REL Levels (750 ppb) and/or OEHHA levels (14 ppb)	EPA Method TO-11A
Particulates (PM 10)	50 micrograms per cubic meter	EPA Method IP-10A
Particulates (PM2.5)	15 micrograms per cubic meter	EPA Method IP-10A
Ozone	0.075 parts per million	ASTM D5149 – 02
Total Volatile Organic Compounds (TVOCs)	500 micrograms per cubic meter	EPA Method TO-17
Carbon Monoxide	9 parts per million but not greater than 2 ppm above outdoor levels	EPA Method IP-3C

Caprolactam	OEHHA REL Levels (1.4 ppb) and/or CDC REL Levels (220 ppb)	EPA Method TO-17
-------------	---	------------------

Air Sampling Summary (See Following Tables for Detailed Results)

Air quality testing results for carbon monoxide, ozone, PM10 dusts, PM2.5 dusts, volatile organic compounds (VOCs), formaldehyde (HCHO) and caprolactam are summarized below.

- 1. Carbon monoxide, a toxic, odorless byproduct of fuel combustion, was less than detection limits (1ppm), indicating no indoor sources of this contaminant during the inspection.
- 2. Ozone levels were less than detection limits, indicating no indoor sources of this contaminant during the inspection and were below the guideline of 0.075 ppm.
- 3. All airborne PM10 dust levels were below the guideline of 50 ug/m^3 .
- 4. All airborne PM2.5 dust levels were below the guideline of 15 ug/m³.
- 5. Volatile organic compounds (TVOCs) results were less than the guideline of 500 ug/m^3
- 6. All Formaldehyde results were below the CARB 8-hour Recommended Exposure Limit (REL) of 27 ppb and OEHHA guideline of 14 ppb.
- 7. All Caprolactam results were below the OEHHA 8-hour Recommended Exposure Limit (REL) of 1.4 ppb.

Conclusions and Recommendations

Following renovations, Healthy Buildings conducted a focused indoor air quality sampling at the 375 Beale Street building located in San Francisco, CA during the days of May $25^{\text{th}} - 27^{\text{th}}$, 2016. Please note the following findings and recommendations:

The data collected for ozone, carbon monoxide, PM-10, PM-2.5, TVOCs, formaldehyde and caprolactam indicate that the indoor air quality meets applicable indoor air quality standards for these contaminants.

For Healthy Buildings,

GNEOLP

Joel Ritschel, LEED AP, CBCP, CEA, REP, MFBA Regional Manager

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 4 of 41

Attachments: Tables of Results

Test Sampling and Analysis for Formaldehyde Content

Objective: To measure the levels of formaldehyde gas present and compare with standards.

Method: Air sampling for eight hours with a calibrated air pump using sorbent tubes equipped with silica gel DNPH coated adsorbent cartridges equipped with an ozone scrubber. After collection the tubes are analyzed using high-performance liquid chromatography (HPLC). This is equal to EPA Method TO-11A.

No.	Location	Formaldehyde Concentration (ppb)			
1	1F South Central Yerba Buena Conference Room 107/109	6.3			
2	1F East Central Building Engineering Office 130	3.1			
3	2F East Central Open Offices 242C	2.5			
4	2F Northeast Lab XRF 234	7.8			
5	2F East Interior Office 218	5.1			
6	6F South Central Conference Room 6206	4.4			
7	6F East Central Office 6344	3.3			
8	6F Southwest Office 6213	6.1			
9	6F Northwest Office 6124	2.7			
10	6F Northeast Office 6326	< 0.0017			
11	7F Northeast Cube Area 7312	2.9			
12	7F Southwest Cube Area 7215	3.8			
13	7F Northwest Office 7115	2.7			
14	8F Northeast Office 8316	3.1			
15	8F South Central Work Room 8358	3.1			
16	8F Southwest Office 8224	3.4			
17	Outdoors	21			

Conclusions:

All Formaldehyde results were below the CARB 8-hour Recommended Exposure Limit (REL) of 27 ppb and OEHHA guideline of 14 ppb.

LA Testing 5431 Industrial Drive, Huntington Beach, CA 92649

	Order ID: 331612666						
Attn:	Results Healthy Buildings International	Customer ID: Customer PO:	32HBI72				
	25381 Commercentre Drive	Date Received:	07/13/16				
	Suite 150 Lake Forest, CA 92630	LA Testing Order:	331612666				
Fax: Phone:	949-450-1120 949-450-1111	Project:	1606019SF				
Email: Report Date:	results@healthybuildings.com 07/18/16	Date Analyzed:	07/13/16				

FORMALDEHYDE by NIOSH 2016M, Issue 2, March 2003 SKC 226-120

LA Testing Sample ID	Client ID	Air Volume (L)	Component	Result (mg/sample)	Result (mg/m³)	Result (ppm)	Reporting Limit (mg/sample)
331612666-0001	1H	49.6	Formaldehyde	0.00038	0.0077	0.0063	0.00010
331612666-0002	2H	46.4	Formaldehyde	0.00017	0.0038	0.0031	0.00010
331612666-0003	3Н	49.6	Formaldehyde	0.00015	0.0030	0.0025	0.00010
331612666-0004	4H	47.0	Formaldehyde	0.00045	0.0096	0.0078	0.00010
331612666-0005	5H	47.8	Formaldehyde	0.00030	0.0063	0.0051	0.00010
331612666-0006	6Н	45.7	Formaldehyde	0.00025	0.0054	0.0044	0.00010
331612666-0007	7H	47.6	Formaldehyde	0.00019	0.0040	0.0033	0.00010
331612666-0008	8H	49.7	Formaldehyde	0.00037	0.0075	0.0061	0.00010
331612666-0009	9Н	46.8	Formaldehyde	0.00016	0.0034	0.0027	0.00010

Sample received in acceptable condition unless otherwise noted. This report relates only to the samples reported above. This report may not be reproduced except in full, without written approval by LA Testing. Quality Control Data associated with this sample set is within acceptable limits. The results for this sample set have not been blank corrected. Tube front and tube back analyzed separately, tube backs are ND unless otherwise indicated. *Note: Tube back was detected and added to the result.

<u>JD</u> Analyst

michael Chapman

Michael Chapman, Laboratory Manager

AIHA-LAP, LLC Accredited - Laboratory ID #101650

LA Testing 5431 Industrial Drive, Huntington Beach, CA 92649

	C	Order ID: 331612666			
.ttn:	Results Healthy Buildings International	Customer ID: Customer PO:	32HBI72		
	25381 Commercentre Drive	Date Received:	07/13/16		
	Suite 150 Lake Forest, CA 92630	LA Testing Order:	331612666		
:	949-450-1120	Project:	1606019SF		
one: nail:	949-450-1111 results@healthybuildings.com	25 26 - 21 - 21 - 21 - 22			
port Date:	07/18/16	Date Analyzed:	07/13/16		

FORMALDEHYDE by NIOSH 2016M, Issue 2, March 2003 SKC 226-120

LA Testing Sample ID	Client ID	Air Volume (L)	Component	Result (mg/sample)	Result (mg/m ³)	Result (ppm)	Reporting Limit (mg/sample)
331612666-0010	10H	47.5	Formaldehyde	<0.00010	<0.0021	< 0.0017	0.00010
331612666-0011	11H	49.9	Formaldehyde	0.00018	0.0036	0.0029	0.00010
331612666-0012	12H	49.6	Formaldehyde	0.00023	0.0047	0.0038	0.00010
331612666-0013	13H	45.7	Formaldehyde	0.00015	0.0033	0.0027	0.00010
331612666-0014	14H	47.57	Formaldehyde	0.00018	0.0038	0.0031	0.00010
331612666-0015	15H	49.8	Formaldehyde	0.00019	0.0038	0.0031	0.00010
331612666-0016	16H	46.8	Formaldehyde	0.00019	0.0042	0.0034	0.00010
331612666-0017	17H	47.9	Formaldehyde	*0.0012	0.025	0.021	0.00010
)			4			

Sample received in acceptable condition unless otherwise noted. This report relates only to the samples reported above. This report may not be reproduced except in full, without written approval by LA Testing. Quality Control Data associated with this sample set is within acceptable limits. The results for this sample set have not been blank corrected. Tube front and tube back analyzed separately, tube backs are ND unless otherwise indicated. *Note: Tube back was detected and added to the result.

Michael Chapman Michael Chapman, Laboratory Manager

JD Analyst

AIHA-LAP, LLC Accredited - Laboratory ID #101650

Page 2 of 2

Test Weighing of Airborne Particles (PM-10)

- Objective: To assess the weight airborne particles at or less than 10 microns in size at random locations of the building and compare with available standards.
- Method: Air sampling for eight hours with a calibrated air pump at approximately 10 LPM using a Model 200 PEM impactor with a 10 µm cut point onto a pre-weighted filter and weighing of the filter on a calibrated laboratory balance. This is comparable to NIOSH 0600 and is equal to EPA IP-10A.

No.	Location	PM-10 Particulate (µg/m ³)
1	1F South Central Yerba Buena Conference Room 107/109	< 0.010
2	1F East Central Building Engineering Office 130	< 0.010
3	2F East Central Open Offices 242C	< 0.010
4	2F Northeast Lab XRF 234	< 0.010
5	2F East Interior Office 218	< 0.010
6	6F South Central Conference Room 6206	<0.010
7	6F East Central Office 6344	< 0.010
8	6F Southwest Office 6213	< 0.010
9	6F Northwest Office 6124	< 0.010
10	6F Northeast Office 6326	< 0.010
11	7F Northeast Cube Area 7312	< 0.010
12	7F Southwest Cube Area 7215	< 0.010
13	7F Northwest Office 7115	< 0.010
14	8F Northeast Office 8316	<0.010
15	8F South Central Work Room 8358	< 0.010
16	8F Southwest Office 8224	< 0.010

Conclusions:

The PM10 results from the testing are no more than $<0.010 \,\mu g/m^3$, well below the recommended acceptable upper limit for airborne PM-10 particles of 50 micrograms per cubic meter of air.

11652 Knott Street Unit F5, Garden Grove, CA 92841 Phone/Fax: (714) 828-4999 / (714) 828-4944 ESTING http://www.LATesting.com	LA Testing Order: 331609832 CustomerID: 32HBI72 CustomerPO: ProjectID:
Attn: Results Phone: Healthy Buildings International Fax: 25381 Commercentre Drive Received Suite 150 Collected Lake Forest, CA 92630 Collected	Date: 6/2/2016

Test Report: PM10 Analysis of Particulate Matter Performed by EPA Reference Method 40 CFR, Chapter I, Part 50, App. J

Sample	Location	Volume (L)	Initial Weight (mg)	Final Weight (mg)	Sample Weight (mg)	Concentration (mg/m³)	Reporting Limit (mg/m³)	Notes	
1P10		4800	59.895	59.925	<0.05	<0.010	0.010		
331609832-0001									
2P10		4800	60.948	60.967	<0.05	<0.010	0.010		
331609832-0002									
3P10		4800	51.512	51.524	<0.05	<0.010	0.010		
331609832-0003									
4P10		4800	55.546	55.541	<0.05	<0.010	0.010		
331609832-0004									
5P10		4800	61.683	61.677	<0.05	<0.010	0.010	17. 17.	
331609832-0005									
6P10		4800	57.172	57.191	<0.05	<0.010	0.010		
331609832-0006									
7P10		4800	61.449	61.450	<0.05	<0.010	0.010	2	
331609832-0007									
8P10		4800	53.170	53.163	<0.05	<0.010	0.010		
331609832-0008									
9P10		4800	56.543	56.555	<0.05	<0.010	0.010		
331609832-0009									
10P10		4800	61.129	61.131	<0.05	<0.010	0.010		
331609832-0010									
11P10		4800	64.067	64.080	<0.05	<0.010	0.010		
331609832-0011									

Analyst(s)

Barbara Przybylska (16)

michael Chapman

Michael Chapman, Laboratory Manager or other approved signatory

The laboratory is not responsible for data reported in mg/m3, which is dependent on volume collected by non-laboratory personnel. This report relates only to the samples reported above. This report may not be reproduced, except in full, without wri Samples analyzed by LA Testing Garden Grove, CA

Initial report from 06/02/2016 16:48:08

Test Report IHAirborneDust-7.27.0 Printed: 6/2/2016 4:48:08 PM

business minded sustainability

1

4	LA Testing 11652 Knott Street Unit F5, Garden Grove, CA 9284 Phone/Fax: (714) 828-4999 / (714) 828-4944 Phone/Fax: (714) 828-4944 phone/Fax: (714) 828-4999 / (714) 828-4944 phone/Fax: (714) 828-4994 phone/Fax: (714	11 ab@latesting.com	LA Testing Order: 331609832 CustomerID: 32HBI72 CustomerPO: ProjectID:
Attn:	Results Healthy Buildings International 25381 Commercentre Drive Suite 150 Lake Forest, CA 92630	Phone: Fax: Received: Analysis Date: Collected:	(949) 450-1111 06/01/16 12:00 PM 6/2/2016
Proje	ct: 1605004SF		

Test Report: PM10 Analysis of Particulate Matter Performed by EPA Reference Method 40 CFR, Chapter I, Part 50, App. J

Sample	Location	Volume (L)	Initial Weight (mg)	Final Weight (mg)	Sample Weight (mg)	Concentration (mg/m³)	Reporting Limit (mg/m³)	Notes
12P10		4800	55.717	55.722	<0.05	<0.010	0.010	
331609832-0012								
13P10		4800	60.360	60.384	<0.05	<0.010	0.010	
331609832-0013								
14P10		4800	57.088	57.083	<0.05	<0.010	0.010	
331609832-0014								
15P10		4800	55.244	55.255	<0.05	<0.010	0.010	
331609832-0015								
16P10		4800	60.218	60.208	<0.05	<0.010	0.010	ja.
331609832-0016								

Notes: Discernable field blank not submitted with samples. Results are not field blank corrected.

Analyst(s)

Barbara Przybylska (16)

michael Chapman

Michael Chapman, Laboratory Manager or other approved signatory

The laboratory is not responsible for data reported in mg/m3, which is dependent on volume collected by non-laboratory personnel. This report relates only to the samples reported above. This report may not be reproduced, except in full, without wri Samples analyzed by LA Testing Garden Grove, CA

Initial report from 06/02/2016 16:48:08

Test Report IHAirborneDust-7.27.0 Printed: 6/2/2016 4:48:08 PM

THIS IS THE LAST PAGE OF THE REPORT.

2

Test Weighing of Airborne Particles (PM-2.5)

- Objective: To assess the weight airborne particles at or less than 2.5 microns in size at random locations of the building and compare with available standards.
- Method: Air sampling for eight hours with a calibrated air pump at approximately 10 LPM using a Model 200 PEM impactor with a 2.5 µm cut point onto a pre-weighted filter and weighing of the filter on a calibrated laboratory balance. This is comparable to NIOSH 0600 and is equal to EPA IP-10A.

No.	Location	PM-2.5 Particulate (µg/m ³)
1	1F South Central Yerba Buena Conference Room 107/109	< 0.010
2	1F East Central Building Engineering Office 130	< 0.010
3	2F East Central Open Offices 242C	<0.010
4	2F Northeast Lab XRF 234	<0.010
5	2F East Interior Office 218	<0.010
6	6F South Central Conference Room 6206	<0.010
7	6F East Central Office 6344	<0.010
8	6F Southwest Office 6213	<0.010
9	6F Northwest Office 6124	< 0.010
10	6F Northeast Office 6326	< 0.010
11	7F Northeast Cube Area 7312	< 0.010
12	7F Southwest Cube Area 7215	< 0.010
13	7F Northwest Office 7115	< 0.010
14	8F Northeast Office 8316	< 0.010
15	8F South Central Work Room 8358	< 0.010
16	8F Southwest Office 8224	< 0.010

Conclusions:

The PM-2.5 results from the testing are no more than $<0.010 \ \mu g/m3$, well below the recommended acceptable upper limit for airborne PM-2.5 particles of 15 micrograms per cubic meter of air.

LA LA Testing 11652 Knott Street, Unit F5, Garden Grove, CA 92841

	Order	ID: 331609833	
Attn:	Results Healthy Buildings International	Customer ID: Customer PO:	32HBI72
	25381 Commercentre Drive, Suite 150	Date Received:	06/01/16
	Lake Forest, CA 92630	LA Testing Order:	331609833
Phone:	949-450-1111		
Fax:		Project:	1605004SF
Email: Report Date:	results@healthybuildings.com 06/03/16	Date Analyzed:	06/03/16

PM2.5 Analysis of Particulate Matter Performed by EPA Reference Method 40 CFR, Chapter I, Part 50, App. J

Volume (L)	Sample ID Analyte		mg	mg/m3	Reporting Limit (mg)	
4800	1 P 2.5	PM 2.5 Analysis	<0.05	< 0.010	0.050	
4800	2 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	
4800	3 P 2.5	PM 2.5 Analysis	< 0.05	< 0.010	0.050	
4800	4 P 2.5	PM 2.5 Analysis	<0.05	< 0.010	0.050	
4800	5 P 2.5	PM 2.5 Analysis	<0.05	< 0.010	0.050	
4800	6 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	
4800	7 P 2.5	PM 2.5 Analysis	<0.05	< 0.010	0.050	
4800	8 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	
	(L) 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800	(L) 1 P 2.5 4800 1 P 2.5 4800 2 P 2.5 4800 3 P 2.5 4800 4 P 2.5 4800 5 P 2.5 4800 6 P 2.5 4800 7 P 2.5	(L) PM 2.5 Analysis 4800 1 P 2.5 PM 2.5 Analysis 4800 2 P 2.5 PM 2.5 Analysis 4800 3 P 2.5 PM 2.5 Analysis 4800 3 P 2.5 PM 2.5 Analysis 4800 4 P 2.5 PM 2.5 Analysis 4800 5 P 2.5 PM 2.5 Analysis 4800 6 P 2.5 PM 2.5 Analysis 4800 6 P 2.5 PM 2.5 Analysis 4800 7 P 2.5 PM 2.5 Analysis	(L) Image: Point of the second se	(L) PM PM <t< td=""></t<>	

Samples were not blank corrected. All QA/QC was acceptable. This report relates only to the samples reported above. Media submitted on Pre-weighed PM-2.5 filter cassettes.

MNH Analyst

Michael Chapman Michael Chapman, Laboratory Manager

Or other approved signatory

AIHA Accredited - Laboratory ID #101650 Page 1 of 2

IA A LA Testing 11652 Knott Street, Unit F5, Garden Grove, CA 92841

	Order	ID: 331609833	
Attn:	Results Healthy Buildings International	Customer ID: Customer PO:	32HBI72
	25381 Commercentre Drive, Suite 150	Date Received:	06/01/16
	Lake Forest, CA 92630	LA Testing Order:	331609833
Phone:	949-450-1111		
Fax:		Project:	1605004SF
Email:	results@healthybuildings.com		
Report Date:	06/03/16	Date Analyzed:	06/03/16

PM2.5 Analysis of Particulate Matter Performed by EPA Reference Method 40 CFR, Chapter I, Part 50, App. J

Lab ID	Volume (L)	Sample ID	Analyte	mg/sample	ррт	Reporting Limit (mg)	
331609833-0009	4800	9 P 2.5	PM 2.5 Analysis	<0.05	< 0.010	0.050	
331609833-0010	4800	10 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	
331609833-0011	4800	11 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	
331609833-0012	4800	12 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	
331609833-0013	4800	13 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	
331609833-0014	4800	14 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	
331609833-0015	4800	15 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	
331609833-0016	4800	16 P 2.5	PM 2.5 Analysis	<0.05	<0.010	0.050	

Samples were not blank corrected. All QA/QC was acceptable. This report relates only to the samples reported above. Media submitted on Pre-weighed PM-2.5 filter cassettes.

MNH Analyst

Michael Chapman Michael Chapman, Laboratory Manager

Or other approved signatory

AIHA Accredited - Laboratory ID #101650 Page 2 of 2

Test Sampling and Analysis for Airborne TVOCs

Objective: To estimate the amounts of volatile organic compounds present in the building air.

Method: Air sampling using multi-bed sorbent tubes. Sorbent tubes are analyzed by double thermal desorption and subsequent analysis by capillary gas chromatography and mass spectroscopy. All non-calibrated compound mass values are estimated and reported as internal standard equivalents. Calculations are performed by summing the integrated total ionic chromatogram (TIC) areas in a sample less the TIC area of the closest internal standard over the retention time interval. The ratio of summed area to the area of the internal standard is calculated. This value is multiplied by the internal standard mass to obtain the equivalent sample mass. The mass of each detected target compound is converted to an air concentration (μ g/m³) and compared to its allowable concentration in Table 4.1 of CDPH v1.1 (except formaldehyde). This method follows EPA Method TO-17.

No.	Location	Total Target VOCs (µg/m ³)
1	1F South Central Yerba Buena Conference Room 107/109	10.36
2	1F East Central Building Engineering Office 130	172.88
3	2F East Central Open Offices 242C	90.71
4	2F Northeast Lab XRF 234	22.39
5	2F East Interior Office 218	72.95
6	6F South Central Conference Room 6206	11.24
7	6F East Central Office 6344	17.22
8	6F Southwest Office 6213	23.17
9	6F Northwest Office 6124	6.89
10	6F Northeast Office 6326	0.0
11	7F Northeast Cube Area 7312	0.0
12	7F Southwest Cube Area 7215	3.37
13	7F Northwest Office 7115	9.52
14	8F Northeast Office 8316	44.63
15	8F South Central Work Room 8358	9.96
16	8F Southwest Office 8224	6.78

Conclusions:

On the days of our testing, the TVOC levels were no more than 172.88 μ g/m³, well below the recommended guideline of 500 μ g/m³.

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 15 of 41

Healthy Buildings

Healthy Buildings

3926 Pender Drive, Suite 120 Fairfax, VA 22030 Ph: (703) 323-4400 Fax: (703) 323-4440

Total Volatile Organic Compound (TVOC) Analysis by GC/MS

Lab ID/Sample #	40004_1	40004_2	40004_3
Client Project #	1605004SF	1605004SF	1605004SF
Tube Serial #	1399	1091	1053
Sample Description	1F CR 109	1F eng ofc 130	2F EC ofcopen 242C
Analyst	MN	MN	MN
Analysis Date	6/1/2016	6/1/2016	6/1/2016
Collection Date	5/25/16-5/26/16	5/25/16-5/26/16	5/25/16-5/26/16
Total Liters	7.09	7.59	6.49
Analysis Date Collection Date	6/1/2016 5/25/16-5/26/16	6/1/2016 5/25/16-5/26/16	6/1/2016 5/25/16-5/26/16

Analyte	Analyte Concentration		(ug/m ³) Concentration (ug/m ³)		g/m³)	Concentration (ug/m		/m³)	
Propylene	<	0.49	U		4.23		<	0.53	U
Dichlorodifluoromethane	<	1.39	U		4.63		<	1.52	U
1,2-Dichlorotetrafluoroethane	<	1.97	U	<	1.84	U	<	2.15	U
Chloromethane	<	0.58	U	<	0.54	U	<	0.64	U
Vinyl Chloride	<	0.72	U	<	0.67	U	<	0.79	U
1,3-Butadiene	<	0.62	U	<	0.58	U	<	0.68	U
Bromomethane	<	1.09	U	<	1.02	U	<	1.20	U
Chloroethane	<	0.74	U	<	0.69	U	<	0.81	U
Trichlorofluoromethane	<	1.58	U	<	1.48	U	<	1.73	U
Ethanol	<	0.53	U		121.94			63.51	
1,1,2-Trichloro-1,2,2- trifluoroethane	<	2.16	U	<	2.02	U	<	2.36	U
1,1-Dichloroethylene	<	1.12	U	<	1.04	U	<	1.22	U
Acetone		1.47			8.20			11.84	
Carbon disulfide	<	0.88	U	<	0.82	U	<	0.96	U
2-Propanol	<	0.69	U	<	0.65	U	<	0.76	U
Dichloromethane	<	0.98	U		20.03			12.04	
tert-Butyl methyl ether	<	1.02	U	<	0.95	U	<	1.11	U
cis-1, 2-Dichloroethylene	<	1.12	U	<	1.04	U	<	1.22	U
Hexane	<	0.99	U	<	0.93	U	<	1.09	U
1,1-Dichloroethane	<	1.14	U	<	1.07	U	<	1.25	U
Vinyl Acetate	<	0.99	U	<	0.93	U	<	1.08	U
trans-1,2-Dichloroethylene	<	1.12	U	<	1.04	U	<	1.22	U
Ethyl Acetate		1.10		<	0.95	U	<	1.11	U

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 16 of 41

Tetrahydrofuran	<	0.83	υ	<	0.78	U	<	0.91	U
Chloroform	<	1.38	U	<	1.29	U	<	1.50	U
Cyclohexane		5.14		<	0.91	U	<	1.06	U
1,1,1-Trichloroethane	<	1.54	U	<	1.44	U	<	1.68	U
Carbon Tetrachloride	<	1.77	U	<	1.66	U	<	1.94	U
Benzene	<	0.90	U	<	0.84	U	<	0.98	U
1,2-Dichloroethane	<	1.14	U	<	1.07	U	<	1.25	U
Heptane	<	1.16	U	<	1.08	U	<	1.26	U
Trichloroethylene	<	1.52	U	<	1.42	U	<	1.66	U
1,2-Dichloropropane	<	1.30	U	<	1.22	U	<	1.42	U
1,4-Dioxane	<	1.02	U	<	0.95	U	<	1.11	U
Bromodichloromethane	<	1.89	U	<	1.76	U	<	2.06	U
trans-1,3-Dichloropropene	<	1.28	U	<	1.20	U	<	1.40	U
4-Methyl-2-Pentanone	<	1.16	U	<	1.16	U	<	1.26	U
Toluene		2.64			5.41			3.33	
cis-1, 3-Dichloropropene	<	1.28	U	<	1.28	U	<	1.40	U
1,1,2-Trichloroethane	<	1.54	U	<	1.54	U	<	1.68	U
Tetrachloroethylene	<	1.91	U	<	1.91	U	<	2.09	U
2-Hexanone	<	1.16	υ	<	1.16	U	<	1.26	U
Dibromochloromethane	<	2.40	U	<	2.40	U	<	2.62	U
1,2-Dibromoethane	<	2.17	U	<	2.17	U	<	2.37	U
Chlorobenzene	<	1.30	U	<	1.30	U	<	1.42	U
Ethylbenzene	<	1.22	U		1.91		<	1.34	U
m,p-Xylene	<	1.22	U		1.81		<	1.34	U
o-Xylene	<	1.22	U		1.59		<	1.34	U
Styrene	<	1.20	U		3.11		<	1.31	U
Bromoform	<	2.91	U	<	2.91	U	<	3.18	U
1,1,2,2-Tetrachloroethane	<	1.94	U	<	1.94	U	<	2.11	U
4-Ethyltoluene	<	1.39	U	<	1.39	U	<	1.51	U
1,2,4-Trimethylbezene	<	1.39	U	<	1.39	U	<	1.51	U
Mesitylene	<	1.39	U	<	1.39	U	<	1.51	U
1,3-Dichlorobenzene	<	1.70	U	<	1.70	υ	<	1.85	U
1,4-Dichlorobenzene	<	1.70	U	<	1.70	U	<	1.85	U
Benzyl chloride	<	1.46	U	<	1.46	U	<	1.59	U
1,2-Dichlorobenzene	<	1.70	U	<	1.70	U	<	1.85	U
1,2,4-Trichlorobenzene	<	2.09	U	<	2.09	U	<	2.29	U
Hexachloro-1,3-butadiene	<	3.01	U	<	3.01	U	<	3.29	U
Acetaldehyde*		ND			ND			ND	
Dimethylformamide (N,N-)*		ND			ND			ND	
Epichlorohydrin*		ND			ND			ND	
Ethylene glycol*		ND			ND			ND	
Ethylene glycol monoethyl ether*		ND			ND			ND	

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 17 of 41

Ethylene glycol monoethyl ether acetate*	ND	ND	ND
Ethylene glycol monomethyl ether*	ND	ND	ND
Ethylene glycol monomethyl ether acetate*	ND	ND	ND
lsophorone*	ND	ND	ND
Naphthalene*	ND	ND	ND
4-PCH*	ND	ND	ND
Phenol*	ND	ND	ND
Propylene glycol monomethyl ether*	ND	ND	ND
Total Target VOCs	10.36	172.88	90.71

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 18 of 41

Healthy Buildings

3926 Pender Drive, Suite 120 Fairfax, VA 22030 Ph: (703) 323-4400 Fax: (703) 323-4440

Total Volatile Organic Compound (TVOC) Analysis by GC/MS

Lab ID/Sample #	40004_4	40004_5	40004_6
Client Project #	1605004SF	1605004SF	1605004SF
Tube Serial #	1605	9249	1852
Sample Description	2F NE xrf lab	2F ec int ofc 218	6F sc int cr 6206
Analyst	MN	MN	MN
Analysis Date	6/1/2016	6/1/2016	6/1/2016
Collection Date	5/25/16-5/26/16	5/25/16-5/26/16	5/25/16-5/26/16
Total Liters	6.59	7.72	6.49

Analyte	Со	Concentration (ug/m³)		Со	ncentration	(ug/m³)	Concentration (ug/m ³)		
Propylene	<	0.52	U		0.83		<	0.53	U
Dichlorodifluoromethane	<	1.50	U	<	1.28	U	<	1.52	U
1,2-Dichlorotetrafluoroethane	<	2.12	U	<	1.81	U	<	2.15	U
Chloromethane	<	0.63	U	<	0.53	U	<	0.64	U
Vinyl Chloride	<	0.78	U	<	0.66	U	<	0.79	U
1,3-Butadiene	<	0.67	U	<	0.57	U	<	0.68	U
Bromomethane	<	1.18	U	<	1.01	U	<	1.20	U
Chloroethane	<	0.80	U	<	0.68	U	<	0.81	U
Trichlorofluoromethane	<	1.70	U	<	1.45	U	<	1.73	U
Ethanol		19.48			59.85			5.74	
1,1,2-Trichloro-1,2,2- trifluoroethane	<	2.32	U	<	1.98	U	<	2.36	U
1,1-Dichloroethylene	<	1.20	U	<	1.03	U	<	1.22	U
Acetone		2.91			8.40			5.50	
Carbon disulfide	<	0.94	U	<	0.81	U	<	0.96	U
2-Propanol	<	0.75	U	<	0.64	U	<	0.76	U
Dichloromethane	<	1.05	U	<	0.90	U	<	1.07	U
tert-Butyl methyl ether	<	1.09	U	<	0.93	U	<	1.11	U
cis-1,2-Dichloroethylene	<	1.20	U	<	1.03	U	<	1.22	U
Hexane	<	1.07	U	<	0.91	U	<	1.09	U
1,1-Dichloroethane	<	1.23	U	<	1.05	U	<	1.25	U
Vinyl Acetate	<	1.07	U	<	0.91	U	<	1.08	U
trans-1, 2-Dichloroethylene	<	1.20	U	<	1.03	U	<	1.22	U
Ethyl Acetate	<	1.09	U	<	0.93	U	<	1.11	U

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 19 of 41

Tetrahydrofuran	<	0.89	U	<	0.76	U	<	0.91	U
Chloroform	<	1.48	U	<	1.26	U	<	1.50	U
Cyclohexane	<	1.04	U	<	0.89	U	<	1.06	U
1,1,1-Trichloroethane	<	1.66	U	<	1.41	U	<	1.68	U
Carbon Tetrachloride	<	1.91	U	<	1.63	U	<	1.94	U
Benzene	<	0.97	U	<	0.83	U	<	0.98	U
1,2-Dichloroethane	<	1.23	U	<	1.05	U	<	1.25	U
Heptane	<	1.24	U	<	1.06	U	<	1.26	U
Trichloroethylene	<	1.63	U	<	1.39	U	<	1.66	U
1,2-Dichloropropane	<	1.40	U	<	1.20	U	<	1.42	U
1,4-Dioxane	<	1.09	U	<	0.93	U	<	1.11	U
Bromodichloromethane	<	2.03	U	<	1.74	U	<	2.06	U
trans-1,3-Dichloropropene	<	1.38	U	<	1.18	U	<	1.40	U
4-Methyl-2-Pentanone	<	1.24	U	<	1.06	U	<	1.26	U
Toluene	<	1.14	U		2.49		<	1.16	U
cis-1,3-Dichloropropene	<	1.38	U	<	1.18	U	<	1.40	U
1,1,2-Trichloroethane	<	1.66	U	<	1.41	U	<	1.68	U
Tetrachloroethylene	<	2.06	U	<	1.76	U	<	2.09	U
2-Hexanone	<	1.24	U	<	1.06	U	<	1.26	U
Dibromochloromethane	<	2.58	U	<	2.21	U	<	2.62	U
1,2-Dibromoethane	<	2.33	U	<	1.99	U	<	2.37	U
Chlorobenzene	<	1.40	U	<	1.19	U	<	1.42	U
Ethylbenzene	<	1.32	U	<	1.12	U	<	1.34	U
m,p-Xylene	<	1.32	U	<	1.12	U	<	1.34	U
o-Xylene	<	1.32	U	<	1.12	U	<	1.34	U
Styrene	<	1.29	U		1.39		<	1.31	U
Bromoform	<	3.14	U	<	2.68	U	<	3.18	U
1,1,2,2-Tetrachloroethane	<	2.08	U	<	1.78	U	<	2.11	U
4-Ethyltoluene	<	1.49	U	<	1.27	U	<	1.51	U
1,2,4-Trimethylbezene	<	1.49	U	<	1.27	U	<	1.51	U
Mesitylene	<	1.49	U	<	1.27	U	<	1.51	U
1,3-Dichlorobenzene	<	1.82	U	<	1.56	U	<	1.85	U
1,4-Dichlorobenzene	<	1.82	U	<	1.56	U	<	1.85	U
Benzyl chloride	<	1.57	U	<	1.34	U	<	1.59	U
1,2-Dichlorobenzene	<	1.82	U	<	1.56	U	<	1.85	U
1,2,4-Trichlorobenzene	<	2.25	U	<	1.92	U	<	2.29	U
Hexachloro-1,3-butadiene	<	3.24	U	<	2.76	U	<	3.29	U
Acetaldehyde*		ND			ND			ND	
Dimethylformamide (N,N-)*		ND			ND			ND	
Epichlorohydrin*		ND			ND			ND	
Ethylene glycol*		ND			ND			ND	
Ethylene glycol monoethyl		ND			ND			ND	
ether*									

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 20 of 41

Ethylene glycol monoethyl ether acetate*	ND	ND	ND
Ethylene glycol monomethyl ether*	ND	ND	ND
Ethylene glycol monomethyl ether acetate*	ND	ND	ND
lsophorone*	ND	ND	ND
Naphthalene*	ND	ND	ND
4-PCH*	ND	ND	ND
Phenol*	ND	ND	ND
Propylene glycol monomethyl ether*	ND	ND	ND
Total Target VOCs	22.39	72. 95	11.24

3926 Pender Drive, Suite 120

Fairfax, VA 22030 Ph: (703) 323-4400 Fax: (703) 323-4440

Total Volatile Organic Compound (TVOC) Analysis by GC/MS

Lab ID/Sample #	40004_7	40004_8	40004_9
Client Project #	1605004SF	1605004SF	1605004SF
Tube Serial #	10	4972	7
Sample Description	6F EC int ofc 6344	6F SW int ofc 6213	6F NW int 6124 ofc
Analyst	MN	MN	MN
Analysis Date	6/1/2016	6/1/2016	6/1/2016
Collection Date	5/25/16-5/26/16	5/25/16-5/26/16	5/25/16-5/26/16
Total Liters	6.59	7.72	7.59

Analyte	Со	Concentration (ug/m³)		Со	ncentration (u	g/m³)	Со	Concentration (ug/m ³)		
Propylene		1.52		<	0.45	U	<	0.45	U	
Dichlorodifluoromethane	<	1.50	U	<	1.28	U	<	1.30	U	
1,2-Dichlorotetrafluoroethane	<	2.12	U	<	1.81	U	<	1.84	U	
Chloromethane	<	0.63	U	<	0.53	U	<	0.54	U	
Vinyl Chloride	<	0.78	U	<	0.66	U	<	0.67	U	
1,3-Butadiene	<	0.67	U	<	0.57	U	<	0.58	U	
Bromomethane		2.57		<	1.01	U		1.16		
Chloroethane	<	0.80	U	<	0.68	U	<	0.69	U	
Trichlorofluoromethane	<	1.70	U	<	1.45	U	<	1.48	U	
Ethanol		3.47			13.68		<	0.50	U	
1,1,2-Trichloro-1,2,2- trifluoroethane	<	2.32	U	<	1.98	U	<	2.02	U	
1,1-Dichloroethylene	<	1.20	U	<	1.03	U	<	1.04	U	
Acetone		3.17			4.38			3.20		
Carbon disulfide	<	0.94	U	<	0.81	U	<	0.82	U	
2-Propanol	<	0.75	U	<	0.64	U	<	0.65	U	
Dichloromethane	<	1.05	U	<	0.90	U	<	0.91	U	
tert-Butyl methyl ether	<	1.09	U	<	0.93	U	<	0.95	U	
cis-1,2-Dichloroethylene	<	1.20	U	<	1.03	U	<	1.04	U	
Hexane	<	1.07	U	<	0.91	U	<	0.93	U	
1,1-Dichloroethane	<	1.23	U	<	1.05	U	<	1.07	U	
Vinyl Acetate	<	1.07	U	<	0.91	U	<	0.93	U	
trans-1,2-Dichloroethylene	<	1.20	U	<	1.03	U	<	1.04	U	
Ethyl Acetate	<	1.09	U	<	0.93	U	<	0.95	U	
Tetrahydrofuran	<	0.89	U	<	0.76	U	<	0.78	U	

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 22 of 41

Chloroform	<	1.48	U	<	1.26	U	<	1.29	U
Cyclohexane	<	1.04	U	<	0.89	U	<	0.91	U
1,1,1-Trichloroethane	<	1.66	U	<	1.41	U	<	1.44	U
Carbon Tetrachloride	<	1.91	U	<	1.63	U	<	1.66	U
Benzene	<	0.97	U	<	0.83	U	<	0.84	U
1,2-Dichloroethane	<	1.23	U	<	1.05	U	<	1.07	U
Heptane	<	1.24	U	<	1.06	U	<	1.08	U
Trichloroethylene	<	1.63	U	<	1.39	U	<	1.42	U
1,2-Dichloropropane	<	1.40	U	<	1.20	U	<	1.22	U
1,4-Dioxane	<	1.09	U	<	0.93	U	<	0.95	U
Bromodichloromethane	<	2.03	U	<	1.74	U	<	1.76	U
trans-1,3-Dichloropropene	<	1.38	U	<	1.18	U	<	1.20	U
4-Methyl-2-Pentanone	<	1.24	U	<	1.06	U	<	1.08	U
Toluene	<	1.14	U	<	0.98	U		2.54	
cis-1,3-Dichloropropene	<	1.38	U	<	1.18	U	<	1.20	U
1,1,2-Trichloroethane	<	1.66	U	<	1.41	U	<	1.44	U
Tetrachloroethylene	<	2.06	U	<	1.76	U	<	1.79	U
2-Hexanone	<	1.24	U	<	1.06	U	<	1.08	U
Dibromochloromethane	<	2.58	U	<	2.21	U	<	2.24	U
1,2-Dibromoethane	<	2.33	U	<	1.99	U	<	2.02	U
Chlorobenzene	<	1.40	U	<	1.19	U	<	1.21	U
Ethylbenzene		2.17			1.58		<	1.14	U
m,p-Xylene		2.47			1.92		<	1.14	U
o-Xylene		1.85			1.61		<	1.14	U
Styrene	<	1.29	U	<	1.10	U	<	1.12	U
Bromoform	<	3.14	U	<	2.68	U	<	2.72	U
1,1,2,2-Tetrachloroethane	<	2.08	U	<	1.78	U	<	1.81	U
4-Ethyltoluene	<	1.49	U	<	1.27	U	<	1.29	U
1,2,4-Trimethylbezene	<	1.49	U	<	1.27	U	<	1.29	U
Mesitylene	<	1.49	U	<	1.27	U	<	1.29	U
1,3-Dichlorobenzene	<	1.82	U	<	1.56	U	<	1.58	U
1,4-Dichlorobenzene	<	1.82	U	<	1.56	U	<	1.58	U
Benzyl chloride	<	1.57	U	<	1.34	U	<	1.36	U
1,2-Dichlorobenzene	<	1.82	U	<	1.56	U	<	1.58	U
1,2,4-Trichlorobenzene	<	2.25	U	<	1.92	U	<	1.95	U
Hexachloro-1,3-butadiene	<	3.24	U	<	2.76	U	<	2.81	U
Acetaldehyde*		ND			ND			ND	
Dimethylformamide (N,N-)*		ND			ND			ND	
Epichlorohydrin*		ND			ND			ND	
Ethylene glycol*		ND			ND			ND	
Ethylene glycol monoethyl ether*		ND			ND			ND	

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 23 of 41

Ethylene glycol monoethyl ether acetate*	ND	ND	ND
Ethylene glycol monomethyl ether*	ND	ND	ND
Ethylene glycol monomethyl ether acetate*	ND	ND	ND
Isophorone*	ND	ND	ND
Naphthalene*	ND	ND	ND
4-PCH*	ND	ND	ND
Phenol*	ND	ND	ND
Propylene glycol monomethyl ether*	ND	ND	ND
Total Target VOCs	17.22	23.17	6.89

3926 Pender Drive, Suite 120

Fairfax, VA 22030 Ph: (703) 323-4400 Fax: (703) 323-4440

Total Volatile Organic Compound (TVOC) Analysis by GC/MS

Lab ID/Sample #		40004_10		
Client Project #		1605004SF		
Tube Serial #		551		
Sample Description		6F NE int of	6326	
Analyst		MN		
Analysis Date		6/1/2016		
Collection Date		5/25/16-5/2	6/16	
Total Liters		8.80		
Analyte	Со	ncentration (u	ıg/m³)	
Propylene	<	0.39	U	
Dichlorodifluoromethane	<	1.12	U	
1,2-Dichlorotetrafluoroethane	<	1.59	U	
Chloromethane	<	0.47	U	
Vinyl Chloride	<	0.58	U	
1,3-Butadiene	<	0.50	U	
Bromomethane	<	0.88	U	
Chloroethane	<	0.60	U	
Trichlorofluoromethane	<	1.28	U	
Ethanol	<	0.43	U	
1,1,2-Trichloro-1,2,2- trifluoroethane	<	1.74	U	
1,1-Dichloroethylene	<	0.90	U	
Acetone	<	0.54	U	
Carbon disulfide	<	0.71	U	
2-Propanol	<	0.56	U	
Dichloromethane	<	0.79	U	
tert-Butyl methyl ether	<	0.82	U	
cis-1,2-Dichloroethylene	<	0.90	U	
Hexane	<	0.80	U	
1,1-Dichloroethane	<	0.92	U	
Vinyl Acetate	<	0.80	U	
trans-1,2-Dichloroethylene	<	0.90	U	
Ethyl Acetate	<	0.82	U	
Tetrahydrofuran	<	0.67	U	

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 25 of 41

Chloroform	<	1.11	U
Cyclohexane	<	0.78	U
1,1,1-Trichloroethane	<	1.24	U
Carbon Tetrachloride	<	1.43	U
Benzene	<	0.73	U
1,2-Dichloroethane	<	0.92	U
Heptane	<	0.93	U
Trichloroethylene	<	1.22	U
1,2-Dichloropropane	<	1.05	U
1,4-Dioxane	<	0.82	U
Bromodichloromethane	<	1.52	U
trans-1, 3-Dichloropropene	<	1.03	U
4-Methyl-2-Pentanone	<	0.93	U
Toluene	<	0.86	U
cis-1,3-Dichloropropene	<	1.03	U
1,1,2-Trichloroethane	<	1.24	U
Tetrachloroethylene	<	1.54	U
2-Hexanone	<	0.93	U
Dibromochloromethane	<	1.94	U
1,2-Dibromoethane	<	1.75	U
Chlorobenzene	<	1.05	U
Ethylbenzene	<	0.99	U
m,p-Xylene	<	0.99	U
o-Xylene	<	0.99	U
Styrene	<	0.97	U
Bromoform	<	2.35	U
1,1,2,2-Tetrachloroethane	<	1.56	U
4-Ethyltoluene	<	1.12	U
1,2,4-Trimethylbezene	<	1.12	U
Mesitylene	<	1.12	U
1,3-Dichlorobenzene	<	1.37	U
1,4-Dichlorobenzene	<	1.37	U
Benzyl chloride	<	1.18	U
1,2-Dichlorobenzene	<	1.37	U
1,2,4-Trichlorobenzene	<	1.69	U
Hexachloro-1,3-butadiene	<	2.42	U
Acetaldehyde*		ND	
Dimethylformamide (N,N-)*		ND	
Epichlorohydrin*		ND	
Ethylene glycol*		ND	
Ethylene glycol monoethyl		ND	
ether*			

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 26 of 41

ND
ND
0.00

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 27 of 41

Healthy Buildings

Healthy Buildings

3251 Old Lee Highway, Suite 100 Fairfax, VA 22030 Ph: (703) 323-4400 Fax: (703) 323-4440

Total Volatile Organic Compound (TVOC) Analysis by GC/MS

Lab ID/Sample #		40004_11			40004_12			40004_13	
Client Project #		1605004SF			1605004SF			1605004SF	
Tube Serial #		G0187588			G0140051			G0142036	
Sample Description		7F NE cube area 7312	ì		7F SW cube area 7215			7F NW int ofc 7115	
Analyst		MN			MN			MN	
Analysis Date		6/2/2016			6/2/2016			6/2/2016	
Collection Date		5/27/2016			5/27/2016			5/27/2016	
Total Liters		8.80			7.10			6.60	
Analyte	Со	ncentration (ug/n	n³)	Со	ncentration (ug/m	1 ³)	Со	ncentration (ug/	m³)
Propylene	<	0.39	U	<	0.48	U		1.02	
Dichlorodifluoromethane	<	1.12	U	<	1.39	U	<	1.50	U
1,2-Dichlorotetrafluoroethane	<	1.59	U	<	1.97	U	<	2.12	U
Chloromethane	<	0.47	U	<	0.58	U		1.00	
Vinyl Chloride	<	0.58	U	<	0.72	U	<	0.77	U
1,3-Butadiene	<	0.50	U	<	0.62	U	<	0.67	U
Bromomethane	<	0.88	U	<	1.09	U		4.49	
Chloroethane	<	0.60	U	<	0.74	U	<	0.80	U
Trichlorofluoromethane	<	1.28	U	<	1.58	U	<	1.70	U
Ethanol	<	0.43	U	<	0.53	U	<	0.57	U
1,1,2-Trichloro-1,2,2- trifluoroethane	<	1.74	U	<	2.16	U	<	2.32	U
1,1-Dichloroethylene	<	0.90	U	<	1.12	U	<	1.20	U
Acetone	<	0.54	U		3.37			2.05	
Carbon disulfide	<	0.71	U	<	0.88	U	<	0.94	U
2-Propanol	<	0.56	U	<	0.69	U	<	0.74	U
Dichloromethane	<	0.79	U	<	0.98	U	<	1.05	U
tert-Butyl methyl ether	<	0.82	U	<	1.02	U	<	1.09	U
cis-1,2-Dichloroethylene	<	0.90	U	<	1.12	U	<	1.20	U
Hexane	<	0.80	U	<	0.99	U	<	1.07	U
1,1-Dichloroethane	<	0.92	U	<	1.14	U	<	1.23	U
Vinyl Acetate	<	0.80	U	<	0.99	U	<	1.07	U
trans-1,2-Dichloroethylene	<	0.90	U	<	1.12	U	<	1.20	U
Ethyl Acetate	<	0.82	U	<	1.01	U	<	1.09	U

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 28 of 41

Tetrahydrofuran	<	0.67	U	<	0.83	U	<	0.89	U
Chloroform	<	1.11	U	<	1.37	U	<	1.48	U
Cyclohexane	<	0.78	U	<	0.97	U	<	1.04	U
1,1,1-Trichloroethane	<	1.24	U	<	1.54	U	<	1.65	U
Carbon Tetrachloride	<	1.43	U	<	1.77	U	<	1.91	U
Benzene	<	0.73	U	<	0.90	U		0.97	
1,2-Dichloroethane	<	0.92	U	<	1.14	U	<	1.23	U
Heptane	<	0.93	U	<	1.15	U	<	1.24	U
Trichloroethylene	<	1.22	U	<	1.51	U	<	1.63	U
1,2-Dichloropropane	<	1.05	U	<	1.30	U	<	1.40	U
1,4-Dioxane	<	0.82	U	<	1.01	U	<	1.09	U
Bromodichloromethane	<	1.52	U	<	1.89	U	<	2.03	U
trans-1,3-Dichloropropene	<	1.03	U	<	1.28	U	<	1.37	U
4-Methyl-2-Pentanone	<	0.93	U	<	0.93	U	<	1.24	U
Toluene	<	0.86	U	<	0.86	U	<	1.14	U
cis-1,3-Dichloropropene	<	1.03	U	<	1.03	U	<	1.37	U
1,1,2-Trichloroethane	<	1.24	U	<	1.24	U	<	1.65	U
Tetrachloroethylene	<	1.54	U	<	1.54	U	<	2.05	U
2-Hexanone	<	0.93	U	<	0.93	U	<	1.24	U
Dibromochloromethane	<	1.94	U	<	1.94	U	<	2.58	U
1,2-Dibromoethane	<	1.75	U	<	1.75	U	<	2.33	U
Chlorobenzene	<	1.05	U	<	1.05	U	<	1.39	U
Ethylbenzene	<	0.99	U	<	0.99	U	<	1.32	U
m,p-Xylene	<	0.99	U	<	0.99	U	<	1.32	U
o-Xylene	<	0.99	U	<	0.99	U	<	1.32	U
Styrene	<	0.97	U	<	0.97	U	<	1.29	U
Bromoform	<	2.35	U	<	2.35	U	<	3.13	U
1,1,2,2-Tetrachloroethane	<	1.56	U	<	1.56	U	<	2.08	U
4-Ethyltoluene	<	1.12	U	<	1.12	U	<	1.49	U
1,2,4-Trimethylbezene	<	1.12	U	<	1.12	U	<	1.49	U
Mesitylene	<	1.12	U	<	1.12	U	<	1.49	U
1,3-Dichlorobenzene	<	1.37	U	<	1.37	U	<	1.82	U
1,4-Dichlorobenzene	<	1.37	U	<	1.37	U	<	1.82	U
Benzyl chloride	<	1.18	U	<	1.18	U	<	1.57	U
1,2-Dichlorobenzene	<	1.37	U	<	1.37	U	<	1.82	U
1,2,4-Trichlorobenzene	<	1.69	U	<	1.69	U	<	2.25	U
Hexachloro-1,3-butadiene	<	2.42	U	<	2.42	U	<	3.23	U
Acetaldehyde*		ND			ND			ND	
Dimethylformamide (N,N-)*		ND			ND			ND	
Epichlorohydrin*		ND			ND			ND	
Ethylene glycol*		ND			ND			ND	
Ethylene glycol monoethyl		ND			ND			ND	
ether*									

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 29 of 41

Ethylene glycol monoethyl ether acetate*	ND	ND	ND
Ethylene glycol monomethyl ether*	ND	ND	ND
Ethylene glycol monomethyl ether acetate*	ND	ND	ND
Isophorone*	ND	ND	ND
Naphthalene*	ND	ND	ND
4-PCH*	ND	ND	ND
Phenol*	ND	ND	ND
Propylene glycol monomethyl ether*	ND	ND	ND
Total Target VOCs	0.00	3.37	9.52

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 30 of 41

Healthy Buildings

Healthy Buildings

3251 Old Lee Highway, Suite 100 Fairfax, VA 22030 Ph: (703) 323-4400 Fax: (703) 323-4440

Total Volatile Organic Compound (TVOC) Analysis by GC/MS

Lab ID/Sample #		40004_14			40004_15			40004_16	
Client Project #		1605004SF			1605004SF			1605004SF	
Tube Serial #		G0140076			G0151363			G0143083	
Sample Description		8F NE perim ofc 8316			8F SC work room 8358			8F SW int ofc 8224	
Analyst		MN			MN			MN	
Analysis Date		6/2/2016			6/2/2016			6/2/2016	
Collection Date		5/27/2016			5/27/2016			5/27/2016	
Total Liters		6.50			7.72			7.59	
Total Electo		0.50			1.12			1.35	
Analyte	Со	ncentration (ug/m³)	l.	Со	ncentration (ug/m ³)		Со	ncentration (ug/m	³)
Propylene	<	0.53	U	<	0.45	U	<	0.45	U
Dichlorodifluoromethane	<	1.52	U	<	1.28	U	<	1.30	ι
1,2-Dichlorotetrafluoroethane	<	2.15	U	<	1.81	U	<	1.84	ι
Chloromethane	<	0.64	U	<	0.53	U	<	0.54	ι
Vinyl Chloride	<	0.79	U	<	0.66	U	<	0.67	L
1,3-Butadiene	<	0.68	U	<	0.57	U	<	0.58	ι
Bromomethane	<	1.19	U	<	1.01	U	<	1.02	ι
Chloroethane	<	0.81	U	<	0.68	U	<	0.69	ι
Trichlorofluoromethane	<	1.73	U	<	1.45	U	<	1.48	ι
Ethanol		32.19			5.37			4.40	
1,1,2-Trichloro-1,2,2- trifluoroethane	<	2.36	U	<	1.98	U	<	2.02	ι
1,1-Dichloroethylene	<	1.22	U	<	1.03	U	<	1.04	L
Acetone		6.06			4.59			2.38	
Carbon disulfide	<	0.96	U	<	0.81	U	<	0.82	ι
2-Propanol	<	0.76	U	<	0.64	U	<	0.65	ι
Dichloromethane	<	1.07	U	<	0.90	U	<	0.91	L
tert-Butyl methyl ether	<	1.11	U	<	0.93	U	<	0.95	L
cis-1,2-Dichloroethylene	<	1.22	U	<	1.03	U	<	1.04	ι
Hexane	<	1.08	U	<	0.91	U	<	0.93	L
1,1-Dichloroethane	<	1.24	U	<	1.05	U	<	1.07	ι
Vinyl Acetate	<	1.08	U	<	0.91	U	<	0.93	ι
trans-1,2-Dichloroethylene	<	1.22	U	<	1.03	U	<	1.04	ι
Ethyl Acetate	<	1.11	U	<	0.93	U	<	0.95	ι

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 31 of 41

Tetrahydrofuran	<	0.91	U	<	0.76	U	<	0.78	U
Chloroform	<	1.50	U	<	1.26	U	<	1.29	U
Cyclohexane	<	1.06	U	<	0.89	U	<	0.91	U
1,1,1-Trichloroethane	<	1.68	U	<	1.41	U	<	1.44	U
Carbon Tetrachloride	<	1.93	U	<	1.63	U	<	1.66	U
Benzene	<	0.98	U	<	0.83	U	<	0.84	U
1,2-Dichloroethane	<	1.24	U	<	1.05	U	<	1.07	U
Heptane	<	1.26	U	<	1.06	U	<	1.08	U
Trichloroethylene	<	1.65	U	<	1.39	U	<	1.42	U
1,2-Dichloropropane	<	1.42	U	<	1.20	U	<	1.22	U
1,4-Dioxane	<	1.11	U	<	0.93	U	<	0.95	U
Bromodichloromethane	<	2.06	U	<	1.74	U	<	1.76	U
trans-1,3-Dichloropropene	<	1.40	U	<	1.18	U	<	1.20	U
4-Methyl-2-Pentanone	<	1.26	U	<	1.06	U	<	1.08	U
Toluene		1.44		<	0.98	U	<	0.99	U
cis-1,3-Dichloropropene	<	1.40	U	<	1.18	U	<	1.20	U
1,1,2-Trichloroethane	<	1.68	U	<	1.41	U	<	1.44	U
Tetrachloroethylene	<	2.09	U	<	1.76	U	<	1.79	U
2-Hexanone	<	1.26	U	<	1.06	U	<	1.08	U
Dibromochloromethane	<	2.62	U	<	2.21	U	<	2.24	U
1,2-Dibromoethane	<	2.36	U	<	1.99	U	<	2.02	U
Chlorobenzene	<	1.42	U	<	1.19	U	<	1.21	U
Ethylbenzene	<	1.34	U	<	1.12	U	<	1.14	U
m,p-Xylene		2.04		<	1.12	U	<	1.14	U
o-Xylene	<	1.34	U	<	1.12	U	<	1.14	U
Styrene	<	1.31	U	<	1.10	U	<	1.12	U
Bromoform	<	3.18	U	<	2.68	U	<	2.72	U
1,1,2,2-Tetrachloroethane	<	2.11	U	<	1.78	U	<	1.81	U
4-Ethyltoluene	<	1.51	U	<	1.27	U	<	1.29	U
1,2,4-Trimethylbezene	<	1.51	U	<	1.27	U	<	1.29	U
Mesitylene		2.90		<	1.27	U	<	1.29	U
1,3-Dichlorobenzene	<	1.85	U	<	1.56	U	<	1.58	U
1,4-Dichlorobenzene	<	1.85	U	<	1.56	U	<	1.58	U
Benzyl chloride	<	1.59	U	<	1.34	U	<	1.36	U
1,2-Dichlorobenzene	<	1.85	U	<	1.56	U	<	1.58	U
1,2,4-Trichlorobenzene	<	2.28	U	<	1.92	U	<	1.95	U
Hexachloro-1,3-butadiene	<	3.28	U	<	2.76	U	<	2.81	U
Acetaldehyde*		ND			ND			ND	
Dimethylformamide (N,N-)*		ND			ND			ND	
Epichlorohydrin*		ND			ND			ND	
Ethylene glycol*		ND			ND			ND	
Ethylene glycol monoethyl ether*		ND			ND			ND	

Judy Yu Bay Area Air Quality Management District Project #1601013SF July 25, 2016 Page 32 of 41

Ethylene glycol monoethyl ether acetate*	ND	ND	ND
Ethylene glycol monomethyl ether*	ND	ND	ND
Ethylene glycol monomethyl ether acetate*	ND	ND	ND
Isophorone*	ND	ND	ND
Naphthalene*	ND	ND	ND
4-PCH*	ND	ND	ND
Phenol*	ND	ND	ND
Propylene glycol monomethyl ether*	ND	ND	ND
Total Target VOCs	44.63	9.96	6 .78

Test Sampling and Analysis for Airborne Caprolactam

Objective: To estimate the amounts of caprolactam present in the building air.

Method: Air sampling using multi-bed sorbent tubes. Sorbent tubes are analyzed by double thermal desorption and subsequent analysis by capillary gas chromatography and mass spectroscopy. This method follows EPA Method TO-17.

No.	Location	Concentration of Caprolactam (ppb)
1	1F South Central Yerba Buena Conference Room 107/109	0.8
2	1F East Central Building Engineering Office 130	0.8
3	2F East Central Open Offices 242C	0.8
4	2F Northeast Lab XRF 234	0.3
5	2F East Interior Office 218	0.2
6	6F South Central Conference Room 6206	0.5
7	6F East Central Office 6344	0.6
8	6F Southwest Office 6213	0.5
9	6F Northwest Office 6124	0.6
10	6F Northeast Office 6326	0.4
11	7F Northeast Cube Area 7312	0.6
12	7F Southwest Cube Area 7215	0.5
13	7F Northwest Office 7115	0.5
14	8F Northeast Office 8316	0.9
15	8F South Central Work Room 8358	0.5
16	8F Southwest Office 8224	0.7
17	Outdoors	

Conclusions:

.

All Caprolactam results were below the OEHHA 8-hour Recommended Exposure Limit (REL) of 1.4 ppb.

BERKELEY ANALYTICAL

815 Harbour Way South, Suite 6 Richmond, CA 94804 Ph. 510-236-2325; Fax 510-236-2335 E-mail info@berkeleyanalytical.com

Analysis of Field-Collected Air Samples

Customer and Project Informat	tion			
Report Certification				
Report number	803-003-IH-July1316			
Report date	July 13, 2016			
Certified by (Name/Title)	Raja Tannous, Laboratory Director			
Signature Lans, Ju				
Date	Jul∮ 13, 2010			
Methods				
U.S. EPA TO-17	Determination of Volatile Organic Compounds in Ambient			
Customer Information				
Customer:	Healthy Buildings International			
City/State/Country	Oakland, CA, USA			
Contact name/Title	Joel Ritschel			
Phone number	973-518-2430			
Project Information				
Project number	1605004SF			
Project name	BAAQMD			
Project location	Not given			
Project date	July 10, 2016			
Laboratory Receiving Informa	tion			
Date samples received by lab	July 11, 2016			
Condition of samples	No observed problems			
Lab tracking numbers	803-003-01 to 803-003-17			

Sample Information, Caprolacta	m

Consula				Malanak		Constitued
Sample No.	Sample Description	Sampler No.	Date Collected	Volume* (L)	Analysis Type	Specified Method
1C	1	058850	July 10, 2016	7.29	Caprolactam	TO-17
2C	2	059926	July 10, 2016	7.7	Caprolactam	TO-17
3C	3	058837	July 10, 2016	7.3	Caprolactam	TO-17
4C	4	059957	July 10, 2016	7.6	Caprolactam	TO-17
5C	5	051152	July 10, 2016	7.4	Caprolactam	TO-17
6C	6	059922	July 10, 2016	7.5	Caprolactam	TO-17
7C	7	058836	July 10, 2016	7.4	Caprolactam	TO-17
8C	8	059958	July 10, 2016	7.4	Caprolactam	TO-17
9C	9	058849	July 10, 2016	7.3	Caprolactam	TO-17
10C	10	051153	July 10, 2016	7.5	Caprolactam	TO-17
11C	11	059928	July 10, 2016	7.5	Caprolactam	TO-17
12C	12	051119	July 10, 2016	7.4	Caprolactam	TO-17
13C	13	059921	July 10, 2016	7.3	Caprolactam	TO-17
14C	14	058846	July 10, 2016	7.5	Caprolactam	TO-17
15C	15	051196	July 10, 2016	7.3	Caprolactam	TO-17
16C	16	059931	July 10, 2016	7.4	Caprolactam	TO-17
17C	17	059956	July 10, 2016	7.5	Caprolactam	TO-17

*Volume in liters reported by customer

803-003-IH-July1316

Do not copy or otherwise reproduce this report except in full

2 of 5

Sample No.	Lab Track. No.	Method	Date Analyzed	Analyst	Data File
1C	803-003-01	TO-17	July 12, 2016	R. Gill	T160712_07
2C	803-003-02	TO-17	July 12, 2016	R. Gill	T160712_08
3C	803-003-03	TO-17	July 12, 2016	R. Gill	T160712_09
4C	803-003-04	TO-17	July 12, 2016	R. Gill	T160712_10
5C	803-003-05	TO-17	July 12, 2016	R. Gill	T160712_11
6C	803-003-06	TO-17	July 12, 2016	R. Gill	T160712_12
7C	803-003-07	TO-17	July 12, 2016	R. Gill	T160712_13
8C	803-003-08	TO-17	July 12, 2016	R. Gill	T160712_14
9C	803-003-09	TO-17	July 12, 2016	R. Gill	T160712_15
10C	803-003-10	TO-17	July 12, 2016	R. Gill	T160712_16
11C	803-003-11	TO-17	July 12, 2016	R. Gill	T160712_17
12C	803-003-12	TO-17	July 12, 2016	R. Gill	T160712_18
13C	803-003-13	TO-17	July 12, 2016	R. Gill	T160712_19
14C	803-003-14	TO-17	July 12, 2016	R. Gill	T160712_20
15C	803-003-15	TO-17	July 12, 2016	R. Gill	T160712_21
16C	803-003-16	TO-17	July 12, 2016	R. Gill	T160712_22
17C	803-003-17	TO-17	July 12, 2016	R. Gill	T160712 23

803-003-IH-July1316

Do not copy or otherwise reproduce this report except in full

3 of 5

Project Specific Information

Air samples for the analysis of caprolactam (CAS # 105-60-2) were received by the laboratory on July 12, 2016. There were seventeen multi-sorbent tubes for the analysis of caprolactam. The analytical results for caprolactam are presented in Table 1. All laboratory data, including but not limited to raw instrument files, calibration files, and quality control checks used to generate the results will be made available to the customer upon request.

Caprolactam was analyzed by thermal desorption GC/MS following U.S. EPA Compendium Method TO-17. Caprolactam was quantified using a multi-point (4 or more points) calibration cure prepared with a pure standard.

MDL and LOQ – A Method Detection Limit (MDL) for caprolactam of 2.3 ng was determined from the analysis of three replicates of a low level standard spiked onto multi-sorbent air sampling tubes. The practical lower limit of quantitation (LOQ) is three times the MDL.

Uncertainty – The laboratory uses the ISO GUM method to estimate the uncertainties associated with the measurement of VOCs. The expanded uncertainty is equal to two times the relative standard deviation. For 2015, the expanded uncertainty estimated for caprolactam was about 11%.

All test methods used in this project are contained in the scope of Berkeley Analytical's ISO/IEC 17025 accreditation (TL-383, International Accreditation Service, Inc.).

803-003-IH-July1316

Do not copy or otherwise reproduce this report except in full

4 of 5

Results, Caprolactam

Table 1. Quantitative analysis of Caprolactam (CAS # 105-60-2).

Sample No.	Sample Name	Volume (L)	Mass (ng)	Conc (µg/m³)	Conc* (ppb)
1C	1	7.29	26.6	3.6	0.8
2C	2	7.7	27.4	3.6	0.8
3C	3	7.3	26.4	3.6	0.8
4C	4	7.6	12.3	1.6	0.3
5C	5	7.4	7.3	1.0	0.2
6C	6	7.5	17.5	2.3	0.5
7C	7	7.4	19.6	2.7	0.6
8C	8	7.4	17.8	2.4	0.5
9C	9	7.3	20.8	2.9	0.6
10C	10	7.5	14.4	1.9	0.4
11C	11	7.5	22.0	2.9	0.6
12C	12	7.4	16.8	2.3	0.5
13C	13	7.3	18.5	2.5	0.5
14C	14	7.5	29.7	4.0	0.9
15C	15	7.3	18.4	2.5	0.5
16C	16	7.4	24.4	3.3	0.7
17C	17	7.5	MDL		

*Concentration in ppb calculated assuming standard conditions of 25° C and 101.3 kPa.

END OF REPORT

803-003-IH-July1316

Do not copy or otherwise reproduce this report except in full

5 of 5

Test Measurement and Averages for Airborne Levels of Carbon Monoxide Gas

Objective Measuring of Carbon Monoxide over an 8-hour period.

Method: Carbon monoxide measurements were electronically recorded with a calibrated instrument containing an electrochemical sensor meeting EPA IP-3C standards.

No.	Location	CO Average (ppm)	CO Outdoors Average (ppm)
1	1F South Central Yerba Buena Conference Room 107/109	0.4	0.6
2	1F East Central Building Engineering Office 130	0.5	0.6
3	2F East Central Open Offices 242C	0.4	0.6
4	2F Northeast Lab XRF 234	0.4	0.6
5	2F East Interior Office 218	0.5	0.6
6	6F South Central Conference Room 6206	0.6	0.8
7	6F East Central Office 6344	0.6	0.8
8	6F Southwest Office 6213	0.4	0.8
9	6F Northwest Office 6124	0.7	0.8
10	6F Northeast Office 6326	0.7	0.8
11	7F Northeast Cube Area 7312	0.8	0.8
12	7F Southwest Cube Area 7215	0.8	0.8
13	7F Northwest Office 7115	0.7	0.8
14	8F Northeast Office 8316	0.8	0.8
15	8F South Central Work Room 8358	0.8	0.8
16	8F Southwest Office 8224	0.8	0.8

Conclusions:

The results from the carbon monoxide testing are no more than 0.8ppm, well below the recommended acceptable upper limit for carbon monoxide of 9 ppm, or 2 ppm above the outdoor level.

Test Measurement and Averages for Airborne Levels of Ozone

Objective Measuring of Ozone over an 8-hour period.

Method: Ozone measurements were electronically recorded with a calibrated instrument containing an electrochemical sensor meeting ASTM D5149-02 standards.

No.	Location	Ozone Average (ppm)
1	1F South Central Yerba Buena Conference Room 107/109	< 0.02
2	1F East Central Building Engineering Office 130	< 0.02
3	2F East Central Open Offices 242C	< 0.02
4	2F Northeast Lab XRF 234	< 0.02
5	2F East Interior Office 218	< 0.02
6	6F South Central Conference Room 6206	< 0.02
7	6F East Central Office 6344	< 0.02
8	6F Southwest Office 6213	< 0.02
9	6F Northwest Office 6124	< 0.02
10	6F Northeast Office 6326	< 0.02
11	7F Northeast Cube Area 7312	< 0.02
12	7F Southwest Cube Area 7215	< 0.02
13	7F Northwest Office 7115	< 0.02
14	8F Northeast Office 8316	< 0.02
15	8F South Central Work Room 8358	< 0.02
16	8F Southwest Office 8224	< 0.02

Conclusions:

The results from the ozone testing are no more than < 0.02 ppm, well below the recommended acceptable upper limit for ozone of 0.075 ppm.

Glossary of Technical Terms		
Carbon dioxide (CO ₂)	A byproduct of respiration and normal constituent of the atmosphere. Measurement of carbon dioxide can provide an indication of ventilation rates in a building and/or a threshold of comfort	
Carbon monoxide (CO)	A toxic byproduct of fuel combustion. While odorless, carbon monoxide gas is often accompanied by other odorous combustion products (aldehydes, oxides of nitrogen, etc.)	
Counts per cubic meter of air (count/m3)	A calculated unit of measurement for quantifying airborne mold spores per unit volume of air	
Formaldehyde (HCHO)	A pungent, organic compound associated with certain new furnishings, glues, pressed woods, vehicle exhaust and tobacco smoke. Reacts in the atmosphere to become a component of smog	
Hydrogen Sulfide (H ₂ S)	Or sewer gas. A toxic and flammable gas associated with rotten egg odor from the bacterial breakdown or organic matter. Detectable by the human sense of smell at extremely low concentration.	
Hyphae	A long branching filamentous cell of a fungi or "root" structures. Their presence often indicates active growth	
Infrared Thermography	The science of detecting radiation in the infrared range. As radiation increases with temperature, thermography allows one to detect the variation in temperature allowing building diagnosticians to "see" moisture accumulation or potential air leakage not otherwise visible.	
Micrograms per cubic meter (µg/m3)	A unit of concentration common to particles and gases which describes the weight or mass of the contaminant per unit volume of air. A microgram is 1/1,000,000th of a gram.	
Micrometer (µm)	A common unit of measurement for microscopic particles. Unit of measure that is 1/1,000,000th the length of a meter	
Moisture meter	An instrument capable of measuring the moisture content of porous and semi-porous materials; used in the assessment of moisture and a metric for potential mold growth	
Mold	Include all species of microscopic fungi that grow in the form of multicellular filaments called hyphae; common consequence to moisture damaged material	
Nitrogen Dioxide (NO2)	A toxic and pungent gas common to internal combustion engines and power plants. Reaction products include ozone.	
Relative humidity	The amount of water vapor that exists in a gaseous mixture of air and water relative to temperature. Measured in %.	
Respirable Suspended Particulate	A classification of dust which describes a particle size range averaging less than 10 micrometers (um) in diameter. Excessive particles in the respirable range are more likely to be implicated in respiratory distress	
Spores	The reproductive structure of mold (fungi) adapted for dispersal. Typically, 1-20 micrometers in diameter. Have been implicated in allergy-like symptoms and rare cases of infection	
Sulfur Dioxide (SO ₂)	A toxic gas associated common to coal burning, power plants, and the incomplete combustion of lower grade fuels.	
Tape Lift	A technique to collect surface molds or settled particles for microscopic analysis	
Temperature	A physical property of air describing heat or cold measured in degrees Fahrenheit	
Total Volatile Organic Compounds (TVOCs)	An aggregate measure of volatile organic compounds in air expressed in ppm or µg/m3.	
Ultrafine Particles	A classification of airborne particles with diameters in the range of $0.02 - 1.0$ micrometers characterized by their ability to reach the gas exchange regions of the lung; under considerable investigation as a trigger for respiratory distress	
Volatile Organic Compounds	Classes of organic chemical compounds (containing carbon) with high enough vapor pressures to exist as gases under normal temperature and pressure conditions. Odors common to fuels, paints, new furnishings, etc.	